Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Heliyon ; 9(6): e16841, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20238045

ABSTRACT

Background: More than half of the population in Korea had a prior COVID-19 infection. In 2022, most nonpharmaceutical interventions, except mask-wearing indoors, had been lifted. And in 2023, the indoor mask mandates were eased. Methods: We developed an age-structured compartmental model that distinguishes vaccination history, prior infection, and medical staff from the rest of the population. Contact patterns among hosts were separated based on age and location. We simulated scenarios with the lifting of the mask mandate all at once or sequentially according to the locations. Furthermore, we investigated the impact of a new variant assuming that it has higher transmissibility and risk of breakthrough infection. Results: We found that the peak size of administered severe patients may not exceed 1100 when the mask mandate is lifted everywhere, and 800 if the mask mandate only remains in the hospital. If the mask mandate is lifted in a sequence (except hospital), then the peak size of administered severe patients may not exceed 650. Moreover, if the new variant has both higher transmissibility and immune reduction, the effective reproductive number of the new variant is approximately 3 times higher than that of the current variant, and additional interventions may be needed to keep the administered severe patients from exceeding 2,000, which is the critical level we set. Conclusion: Our findings showed that the lifting of the mask mandate, except in hospitals, would be more manageable if implemented sequentially. Considering a new variant, we found that depending on the population immunity and transmissibility of the variant, wearing masks and other interventions may be necessary for controlling the disease.

2.
Sci Rep ; 13(1): 6914, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2298576

ABSTRACT

As the COVID-19 situation changes because of emerging variants and updated vaccines, an elaborate mathematical model is essential in crafting proactive and effective control strategies. We propose a COVID-19 mathematical model considering variants, booster shots, waning, and antiviral drugs. We quantify the effects of social distancing in the Republic of Korea by estimating the reduction in transmission induced by government policies from February 26, 2021 to February 3, 2022. Simulations show that the next epidemic peak can be estimated by investigating the effects of waning immunity. This research emphasizes that booster vaccination should be administered right before the next epidemic wave, which follows the increasing waned population. Policymakers are recommended to monitor the waning population immunity using mathematical models or other predictive methods. Moreover, our simulations considering a new variant's transmissibility, severity, and vaccine evasion suggest intervention measures that can reduce the severity of COVID-19.


Subject(s)
COVID-19 , Epidemics , Humans , Physical Distancing , COVID-19/epidemiology , COVID-19/prevention & control , Immunization, Secondary , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Vaccination
3.
PeerJ ; 10: e14151, 2022.
Article in English | MEDLINE | ID: covidwho-2056273

ABSTRACT

In this work, we present an approach to determine the optimal location of coronavirus disease 2019 (COVID-19) vaccination sites at the municipal level. We assume that each municipality is subdivided into smaller administrative units, which we refer to as barangays. The proposed method solves a minimization problem arising from a facility location problem, which is formulated based on the proximity of the vaccination sites to the barangays, the number of COVID-19 cases, and the population densities of the barangays. These objectives are formulated as a single optimization problem. As an alternative decision support tool, we develop a bi-objective optimization problem that considers distance and population coverage. Lastly, we propose a dynamic optimization approach that recalculates the optimal vaccination sites to account for the changes in the population of the barangays that have completed their vaccination program. A numerical scheme that solves the optimization problems is presented and the detailed description of the algorithms, which are coded in Python and MATLAB, are uploaded to a public repository. As an illustration, we apply our method to determine the optimal location of vaccination sites in San Juan, a municipality in the province of Batangas, in the Philippines. We hope that this study may guide the local government units in coming up with strategic and accessible plans for vaccine administration.

4.
J Korean Med Sci ; 37(26): e209, 2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1924067

ABSTRACT

BACKGROUND: The most recent variant of concern, omicron (B.1.1.529), has caused numerous cases worldwide including the Republic of Korea due to its fast transmission and reduced vaccine effectiveness. METHODS: A mathematical model considering age-structure, vaccine, antiviral drugs, and influx of the omicron variant was developed. We estimated transmission rates among age groups using maximum likelihood estimation for the age-structured model. The impact of non-pharmaceutical interventions (NPIs; in community and border), quantified by a parameter µ in the force of infection, and vaccination were examined through a multi-faceted analysis. A theory-based endemic equilibrium study was performed to find the manageable number of cases according to omicron- and healthcare-related factors. RESULTS: By fitting the model to the available data, the estimated values of µ ranged from 0.31 to 0.73, representing the intensity of NPIs such as social distancing level. If µ < 0.55 and 300,000 booster shots were administered daily from February 3, 2022, the number of severe cases was forecasted to exceed the severe bed capacity. Moreover, the number of daily cases is reduced as the timing of screening measures is delayed. If screening measure was intensified as early as November 24, 2021 and the number of overseas entrant cases was contained to 1 case per 10 days, simulations showed that the daily incidence by February 3, 2022 could have been reduced by 87%. Furthermore, we found that the incidence number in mid-December 2021 exceeded the theory-driven manageable number of daily cases. CONCLUSION: NPIs, vaccination, and antiviral drugs influence the spread of omicron and number of severe cases in the Republic of Korea. Intensive and early screening measures during the emergence of a new variant is key in controlling the epidemic size. Using the endemic equilibrium of the model, a formula for the manageable daily cases depending on the severity rate and average length of hospital stay was derived so that the number of severe cases does not surpass the severe bed capacity.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Models, Theoretical , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL